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1. Introduction
v

In 1983, John Conway and Cameron Gordon published a well-known paper Knots and links in spatial graph
[CMG83] that stimulated a wide range of interests in the study of spatial graph theory. In this note, we review
this classical paper and some of the earliest results in intrinsic properties of graphs. We first review some of the
definitions.

Definition 1.1 (Graphs). A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E are
2-element subsets of V . The elements of V are the vertices of the graph G, and the elements of E are called
edges of G. Two vertices u, v ∈ V are called adjacent if (u, v) ∈ E. We restrict our attention to undirected
graphs, i.e. each pair in E is unordered.

Definition 1.2 (Graph isomorphism). Let G = (V,E) and G′ = (V ′, E′) be two graphs. A bijective map
φ : V → V ′ is called an isomorphism from G to G′ if both φ and its inverse φ−1 preserves the adjacency of
vertices. We say that G and G′ are isomorphic and write G ∼= G′.

Definition 1.3 (Embedding). A function f : X → Y is an embedding if and only if f : X → f(X) is a
homeomorphism from X to f(X), where f(X) has the subspace topology from Y .

Definition 1.4 (Isotopy). Suppose that X and Y are topological spaces and f, g : X → Y are embeddings.
An isotopy from f to g is a function H : X × [0, 1] → Y such that H(·, 0) = f,H(·, 1) = g, and H(·, t) is an
embedding for each t. If such a function exists, we say that f and g are isotopic.

Notice that isomorphic graphs do not necessarily have isotopic embeddings.

Example 1.5. In the case of K6, as we will show later, there is no way to deform one of embedding of K6

through space to look like another, without allowing edges to pass through themselves or each other.

Definition 1.6 (Spatial graph and Spatial embedding). Let G be a graph and let f be an embedding of G in
S3. Then we say the image f(G) is a spatial graph and f is a spatial embedding.

Definition 1.7 (Intrinsically linked and intrinsically knotted). If the image of every embedding of G in S3

contains a non-trivial link then we say G is intrinsically linked, and if the image of every embedding of G in
S3 contains a non-trivial knot then we say G is intrinsically knotted.
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2. Links and K6

v

Theorem 2.1. K6 is intrinsically linked.

In [Sac83] and [CMG83], Sachs, Conway and Gordon proved this theorem independently. Here, we present
the combinatorial argument in [CMG83].

Let φ be an embedding of K6 into S3. Let (C1, C2) be an unordered pair of disjoint cycles of K6. Notice
that both C1 and C2 contains exactly three disjoint edges.
Claim 2.2. There are 10 distinct pairs of (C1, C2).

Proof. The number of possible ways to choose an ordered pair (C1, C2) is given by(
6

3

)
=

6!

3!3!
= 20 (2.0.1)

Hence, the number of ways to choose an unordered pair (C1, C2) is simply 20/2 = 10.

Let lk(φ(C1), φ(C2)) be the linking number of the embedding of this pair of cycles. Let λ ∈ Z2 be the sum
of lk(φ(C1), φ(C2)) over ten possible pairs mod 2. That is,

λ =
∑

(C1,C2)

lk(φ(C1), φ(C2)) mod 2 (2.0.2)

The main idea of the proof is that if λ = 1 for one of the embedding of K6, then this embedding contains a
nontrivial link. Hence, if λ = 1 despite how you changes crossings to go from one embedding to another, then
K6 is intrinsically knotted.

2.1 Crossing change v

Claim 2.3. λ is invariant under crossing changes.

Proof. We consider two cases. Let the disjoint pair (C1, C2) be given,
Suppose we change a crossing between an edge with itself or two adjacent edges. Then because C1 and C2

are disjoint, the crossing must lie entirely within C1 or C2. lk(φ(C1), φ(C2)) remains unchanged and thus λ is
unchanged.
Suppose we change a crossing between two non-adjacent edges. Let e1, e2 be such two edges and without loss
of generality, suppose e1 ∈ C1 and e2 ∈ C2. If we change such a crossing, then we changed the linking number
lk(φ(C1), φ(C2)) by ±1. Notice that there is exactly another pair (C ′1, C

′
2) of disjoint cycles such that e1 ∈ C ′1 and

e2 ∈ C ′2. Hence, we have that
∑

(C1,C2)
lk(φ(C1), φ(C2)) will change by ±2 or 0. That is, λ remains invariant.

2.2 Linked Embedding of K6 v

As λ remains invariant under crossing change, if we have λ = 1 for one of the embedding of K6, then for all
possible embeddings of K6, it must contains a nontrivial link. As shown in the figure below, this embedding
contains 1 link as marked by the bold lines.
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2.3 Peterson family v

Definition 2.4 (Y∆-exchange). Let G = (V,E) be a graph and v ∈ V a vertex of degree 3. Let H be obtained
from G by first deleting v and its adjacent edges, and then adding an edge between every pair of neighbours of
v. We say that H is obtained from G by Y∆-exchange and that G is obtained from H by ∆Y -exchange.

Definition 2.5 (Peterson family). The set of all graphs obtained from K6 by a series Y∆-exchanges and
∆Y -exchanges is called the Peterson family.

There are 7 graphs in the Peterson family. This picture is taken from [O’D10].

Sachs proved the following using a similar argument we have just shown.
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Theorem 2.6 ( [Sac83]). Any graph in the Peterson family is intrinsically linked.

Furthermore, Sachs has shown that λ(K4,4) is always 0 and thus if we let K−4,4 be a graph obtained from
K4,4 by removing edge (1, 1′), then λ(K−4,4) is always 1.

Theorem 2.7 ( [Sac83]). Any graph obtained from K−4,4 by a series Y∆-exchanges and ∆Y -exchanges is
intrinsically linked.

Notice that this is not a surprise as K−4,4 is intuitively "two copies of K3,3,1 glued together on the K3,3

subgraph". As we will see below in theorem 2.10, this can be formally generalised.

Definition 2.8 (Flat embedding). An embedding φ of a graph G in S3 is flat if for every cycle C of G there
exists an open disk in S3 disjoint from φ(G) whose boundary is φ(C).

Definition 2.9 (Graph minor). A graph H is a minor of another graph G if H can be obtained from G by
contracting edges.

Robertson, Seymour and Thomas proved that a graph G has a linkless spatial embedding if and only if it
does not a minor in Peterson family.

Theorem 2.10 ( [RST93]). For a graph G, the following are equivalent.

1. G has a flat embedding.

2. G has a linkless embedding.

3. G has no minor in the Peterson family.

It is intuitive that flat embedding implies linkless embedding. Step 2 to Step 3 is partially proved in theorem
2.6. However, the step from 3 to 2 is very nontrivial to prove.
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3. Knots and K7

v

Theorem 3.1. K7 is intrinsically knotted.

The spirit of the proof is very similar to that of linked-ness of K6. Before we jump into the proof, we present
a different type of invariant.

3.1 Arf Invariant v

We take the definition of Arf Invariant introduced in [Kau83], [Ada04] and [Man18]. The Arf invariant comes
from Seifert surfaces. Namely, let K be a knot and l be a band that is a part of the Seifert surface of the knot
K, as shown in the upper part of the figure below. Let K ′ be the knot obtained from K twisting this band by
two full turns, i.e. double twisting, as shown in the lower part of the figure below.

Definition 3.2 (As stated in [Man18]). We say that K and K ′ are Arf equivalent and the Arf invariant is
the complete invariant of the Arf equivalent classes.

Theorem 3.3. Each knot is either Arf equivalent to the unknot or to a trefoil.

This theorem allows us to denote α(K) ∈ Z2 as α(K) = 0 if K is Arf equivalent to the unknot and α(K) = 1
otherwise. Let knotsK+,K− and a two component link L = L1∪L2 be identical except for a small neighbourhood
as shown in the figure below.

We state the following lemma without a formal proof as it involves symplectic basis, which is beyond the scope
of this note.

Lemma 3.4 ( [CMG83]). α(K+)− α(K−) = lk(L1, L2)
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3.2 Main Proof v

The main proof of theorem 3.1 bears a combinatorial nature. The goal is to show that∑
C⊆K7,C is a Hamiltonian cycle

α(C) (3.2.1)

is invariant under crossing changes. Notice that there are (7− 1)!/2 = 360 Hamiltonian cycles in K7.

Proof of theorem 3.1. We consider three types of crossings.

1. A crossing between an edge with itself. Notice that we don’t need to consider this case. As shown in the
figure below, such a crossing can be replaced by 5 changes of crossings with other distinct edges.

2. A crossing between two adjacent edges A,B, as shown below. Let C be a Hamiltonian cycle that contains
A and B and L = L1 ∪ L2 be the link determined by C.

By lemma 3.4, the change induced by this crossing change is exactly lk(L1, L2). Let F be an edge in C
and F 6= A,F 6= B. Let ω(L1, F ) be the number of times that L1 crosses over F in the projection. Notice
that lk(L1, L2) =

∑
F ω(L1, F ) summing over all possible choices of F .

Note that E,A and B cannot have a common vertex since otherwise C is a cycle. If E is adjacent to A or
B but not both, there are 6 such cycles C. If E is not adjacent to either A or B, then there are in total
2× 3! such cycles C. Hence, we have that∑

C

lk(L1, L2) mod 2 =
∑
C

∑
F

ω(L1, F ) mod 2 = 0 (3.2.2)

because for each possible F , there is exactly an even number of repetitions of ω(L1, F ) that appears in∑
C

∑
F ω(L1, F ).
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3. We now consider the case that A,B are not adjacent, as shown below. C,L1, L2 are defined similarly.

It suffices to show that ∑
C

lk(L1, L2) mod 2 =
∑
C

∑
F1,F2

ω(F1, F2) mod 2 = 0 (3.2.3)

for all pairs of edges (F1, F2), F1 ∈ L1, F2 ∈ L2, F1 6∈ {A,B}, F2 6∈ {A,B}. Again, the number of Hamilto-
nian cycles containing A,B, F1, F2 and satisfying F1 ∈ L1, F2 ∈ L2 is even.

It remains to show that one embedding of K7 is knotted, as we show below.
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